
International Journal of Theoretical Physics, Vol. 46, No. 5, May 2007 ( C© 2007)
DOI: 10.1007/s10773-006-9277-y
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A new discrete heiarchy of integrable equations is generated from a new Lax Operator
and a canonical Bäcklund transformation of the system is derived using Sklyanin’s for-
malism, based on the classical r-matrix. By quantising the system a quantum analogue
of the corresponding canonical Bäcklund transformation is obtained and certain prop-
erties of the associated Q-operator are examined. Finally the analytical Bethe Ansatz is
used to solve for the spectrum.
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1. INTRODUCTION

In the study of completely integrable systems, a special place is held by mod-
els which are discrete in nature, owing to the existence of concrete methods for their
quantization (Korepin et al., 1993). An elegant feature of any integrable system is
its proliferation of its solutions obtained by means of a Bäcklund transformation
(Sklyanin, 1999). Recently a new approach for studying Bäcklund transformation
was initiated by Sklyanin et al in case of discrete integrable systems. The Bäcklund
transformation (CBT) derived by this method had its additional feature of being
canonical transformations, by the very nature of their construction: being derivable
from a suitable generating function. Further more their canonical nature enables
one to continue to the quantum domain and it is possible to deduce the Baxter’s
Q operator which represents in some sense the quantum counterpart of the clas-
sical Canonical Bäcklund transformation . In the quantum regime it is legitimate
exercise to explore the excitation spectrum using the appropriate version of
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the Bethe Ansatz. On closer examination it is found that the entire procedure
for obtaining such canonical Bäcklund transformations is an outcome of the
theory of classical r-matrix theory first formulated by Semenov-Tian-Shansky
(in press).

Over the last couple of decades, the quantum inverse scattering method
has become a standard technique for determining the exact eigen values and
Bethe states for a wide class of integrable models mostly by means of algebraic
Bethe Ansatz. However quantization of Bäcklund transformation is a much more
recent notion. Indeed Skylanin’s elegant method of deriving canonical Bäcklund
transformations is crucially dependent on finding two different representations of
classical r-matrix equation

{L(x, λ) ⊗, L(y, µ)} = [r(λ − µ), L(x, λ) ⊗ L(y, µ)]δ(x − y)

as will be evident in Section 3.
In this communication we have introduced a new Lax operator and have de-

rived a new set of discrete nonlinear integrable equations in Section 2. The canon-
ical dynamical variables may be identified through the trace identity technique of
Zhang et al. (1991). In Section 3 we have obtained the canonical Bäcklund trans-
formation for the system and its generating function. In Section 4 we have breifly
outlined the construction of the corresponding quantum mechanical counterpart
and have obtained the Q operator. Finally, in Section 5 by using the analytical
Bethe Ansatz we have obtained excitation spectrum.

2. FORMULATION

We consider the following discrete Lax operator defined at the nth lattice site
by

Ln =
(

0 −x−1
n

xn u + ipnxn

)
(2.1)

and satisfying the corresponding lax equation

ψn+1 = lnψn (2.2)

where u is the complex spectral parameter. The time evolution of ψn is given by

ψn,t = Vnψn. (2.3)

In Eq. (2.1) xn and pn are the dynamical variables satisfying the poisson brackets

{pn, xm} = δnm, {pn, pm} = {xn, xm} = 0. (2.4)
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We begin by writing the time evolution matrix

Vn =
(

An Bn

Cn Dn

)
(2.5)

with the usual expansions of An,Bn etc. in the following form:

An =
m∑

i=−m

uian
i , Bn =

m∑
i=−m

uibn
i . (2.6)

For example we consider here the simplest case when m = 1, so that

An(u) = 1

u
an

−1 + an
0 + uan

1

Bn(u) = 1

u
bn

−1 + bn
0 + ubn

1

Cn(u) = 1

u
cn
−1 + cn

0 + ucn
1 (2.7)

Dn(u) = 1

u
dn

−1 + dn
0 + udn

1 .

Then the compatibility condition of (2.2) and (2.3) leads to the following coupled
nonlinear system

xn,t = −(a′′ − d ′′)xn − i(a′ − d ′)p−1
n + ipnx

2
n(a − d)

pn,t = −i(a − d)
(
x−2

n xn+1 − x−1
n−1

) + pn(a′′ − d ′′)

+ ix−1
n (a′ − d ′) − ixnp

2
n(a − d) (2.8)

where

an
0 = a′′ = constant, an

1 = a = constant, an
−1 = a′ = constant

dn
0 = d ′′ = constant, dn

1 = d = constant, dn
−1 = d ′ = constant

bn
0 = x−1

n−1(a − d) bn
1 = 0 bn

−1 = −ix−2
n−1p

−1
n−1(a′ − d ′) (2.9)

cn
0 = xn(d − a) cn

1 = 0 cn
−1 = ip−1

n (a′ − d ′).

If we set

(a′′ − d ′′) = α ≡ −1

(a′ − d ′) = β ≡ +i

(a − d) = γ ≡ +i
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then (2.8) may be expressed in the form

xn,t = xn(1 − pnxn) + p−1
n

pn,t = −pn(1 − pnxn) +
(

xn+1 − xn

x2
n

− 1

xn−1

)
(2.10)

It may now be easily verified that the symplectic structure deduced from the
trace identity formulae of Zhang et al. actually leads to the Poisson brackets (2.4).

Having derived the new hiearchy of discrete nonlinear equations (2.8), we
next proceed to study one of its most interesting properties—namely the generation
of new solutions from existing ones.

3. BÄCKLUND TRANSFORMATION

The Lax operator given by Eq. (2.1) together with the basic poisson brackets
(2.4) immediately leads to the following fundamental poisson brackets for the Lax
operator, viz.

{Ln(u) ⊗, Lm(v)} = [r(u, v), Ln(u) ⊗ Lm(v)]δnm (3.1)

where r(u, v) represents the classical r- matrix and is given by

r(u, v) = iP

u − v
,

with P being the permutation operator satisfying P (x ⊗ y) = y ⊗ x. In order to
find a local canonical Bäcklund transformation for the above system, i.e

Bk : (pk, xk) −→ (p̃k, x̃k). (3.2)

We employ the technique devised by Sklyanin in Sklyanin (1999). We assume that
the transformation depends on an arbitrary complex parameter λ. Owing to the
canonical nature of the transformation the Hamiltonians and associated Poisson
structure should remain unchanged when expressed in terms of the new variables
(p̃k, x̃k). As stated earlier the main requirement is to find another Lax operator
Mn(u) possessing the same r matrix and satisfying the relation (3.1). The point
here is that of the several matrices obeying the r-matrix relation (3.1) one has to
choose a particular one which satisfies the following :

Mk(u, λ) lk(pk, xk; u) = l̃k(p̃k, x̃k; u) Mk(u, λ), k = 1 . . . N (3.3)

where N represents the total number of lattice sites. Relation (3.3) is assumed
to hold for the values of the spectral parameter u. To account for the dynamical
variables involved in the definition of Mk(u; λ), Sklyanin formulated an elegant
method based on the concept of an extended phase space. That is, besides the
basic variables (pk, xk) and (p̃k, x̃k), one needs to consider additional phase space
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variables (qk, rk) and (sk, tk), known as auxiliary phase space variables required
to define Mk(u, λ); so that Eq. (3.3) should be written as

Mk(u, λ; qk, rk) lk(u; pk, xk) = l̃k(u; p̃k, x̃k) Mk(u, λ; sk, tk) (3.4)

with (qk, rj ) and (sk, tj ) satisfying the poisson brackets

{qk, rj } = δkj , {sk, tj } = δkj .

{qk, qj } = 0 = {rk, rj }, {sk, sj } = 0 = {tk, tj }. (3.5)

Since the local Bäcklund transformation of Bk of Eq. (3.2) is assumed to
be a mapping from (pk, xk) to (p̃k, x̃k), the auxiliary variables (qk, rk) and (sk, tk)
involved in Eq. (3.4) should ultimately be eliminated. To this end we shall impose
the following constraints

sk = qk−1, tk = rk−1. (3.6)

Regarding the particular choice of Mk(u, λ) we consider the Lax operator

Mk(u, λ; qk, rk) ≡
(

u − λ + qkrk qk

rk 1

)
. (3.7)

Substituting (3.7) into (3.4) and equating coefficients of the different powers
of the spectral parameter u, leads to the following set of equation:

qkrk = −x̃−1
k tk, −x̃k = tk, qk = x−1

k .

xk = x̃k(sktk − λ) + itkp̃kx̃k

x̃ksk + ip̃kx̃k = −rkx
−1
k + ipkxk (3.8)

−x̃−1
k = x−1

k (λ − qkrk) + iqkpkxk

We solve the above set of Eqs. (3.8) for the following variables.

tk = −x̃k, qk = x−1
k

ipk = −
(

λ

xk

+ 1

x̃k

)
+ rk

x2
k

(3.9)

ip̃k = −
(

λ

x̃k

+ xk

x2
k

+ sk .

Upon imposing the constraints stated in Eq. (3.6) in Eq. (3.9) we obtain

ipk = −
(

λ

xk

+ 1

x̃k

+ x̃k+1

x2
k

)

p̃k = λ

x̃k

+ 1

xk−1
+ xk

x̃2
k

(3.10)
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Equation (3.10) represents the requisite local Bäcklund transformation be-
tween the variables (pk, xk) and (p̃k, x̃k). Furthermore, it may be easily verified
that these equations may be derived from a generating function F (λ; {xk}, {x̃k})
i.e.;

pk = ∂F

∂xk

p̃k = − ∂F

∂x̃k

(3.11)

where

F (λ; {xk}, {x̃k}) = i

N∑
k=1

{
− x̃k+1

xk

+ xk

x̃k

+ λ ln
xk

x̃k

}
. (3.12)

4. CONSTRUCTION OF Q-OPERATOR AND ITS PROPERTIES

An interesting aspect of the quantum mechanical consideration of integrable
systems, which has emerged in recent times, is that Baxter’s Q-operator, which
was originally deduced in the context of lattice models in solid state physics, is
nothing but the quantum version of a canonical Bäcklund transformation. The
constructon of Q-operator is based on the idea of finding an integral operator R̂λ

defined by

R̂λφ(x, q) =
∫

dx

∫
dqRλ(x̃, s|x, q)φ(x, q). (4.1)

Recalling the fact the canonical Bäcklund transformation discussed in the pre-
ceeding section, represents a mapping from the variables (pk, xk) −→ (p̃k, x̃k),
the first step in the construction of the Q-operator or more specifically R̂λ consists
in representing the Lax operator lk(u) of Eq. (2.1) in terms of differential operators
satisfying the basic quantum mechanical commutation rules

[pk, xj ] = −iηδkj , [p̃k, x̃j ] = −iηδkj . (4.2)

Here we adopt the following representations of pk and p̃k namely

pk = −iη
∂

∂xk

, p̃k = −iη
∂

∂x̃k

(4.3)

such that the local quantum mechanical Lax operator lk(u) assumes the following
form

lk(pk, xk, u) = lk

(
−iη

∂

∂xk

, xk, u

)
=

(
0 −x−1

k

xk u + η ∂
∂xk

xk

)
(4.4)
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while the matrix Mk(q, r, u − λ) becomes

Mk(u − λ) =
(

u − λ + ηqk
∂

∂qk
qk

ηqk 1

)
. (4.5)

The crucial point in the determination of any Q-operator is that it commutes
with the trace t(u) of the monodromy matrix T (u) ≡ ∏N

k=1 lk(u). This will be true
if the kernel of the operator R̂λ viz Rλ satisfies the following relation (Kuznetsov
et al., 2000)

RλM

(
u − λ, q,

∂

∂q

)
l

(
u, x,

∂

∂x
= l̃

(
u, x̃,

∂

∂x̃

)
M

(
u − λ, s,

∂

∂s

)
Rλ (4.6)

where for notational convenience we have omitted the lattice site index “k.”
Consequently we have the following relation:

Rλ

(
u − λ + ηq ∂

∂q
q

η ∂
∂q

1

)(
0 −x−1

x u + η ∂
∂x

x

)

=
(

0 −x̃−1

x̃ u + η ∂
∂x̃

x̃

) (
u − λ + ηs ∂

∂s
s

η ∂
∂s

1

)
Rλ. (4.7)

Utilising the properties of adjoint operators we can shift Rλ occuring on the
left hand side of (4.7) to the right, whence upon equating the coefficients of he
powers of u, we are led to the following set of equations:

∂Rλ

∂s
= − qx

ηx̃−1
Rλ (4.8)

(q − x−1)Rλ = 0 (4.9)

ηq

(
x

∂Rλ

∂x
− x−1 ∂Rλ

∂q

)
= {(λ + η)x−1 + x̃−1}Rλ (4.10)

(x + λx̃)Rλ = η(x̃s + η)
∂Rλ

∂s
+ η2x̃

∂2Rλ

∂s∂η
(4.11)

x−1 ∂Rλ

∂q
− x

∂Rλ

∂x
− y

∂Rλ

∂y
=

(
x̃s

η
+ 1

)
Rλ. (4.12)

Upon solving the above set of partial differential equations we arrive at the
following solution for the kernel Rλ:

Rλ(x̃, sk|xk, qk) = ρλx
λ+η

η

k x̃
− (λ+2η)

η

k exp

(
xk

ηx̃k

− x̃ksk

η

)
δ
(
qk − x−1

k

)
. (4.13)

Here ρλ is a normalisation constant, whose value will be fixed later. Knowing
Rλ we can construct the Q-operator, which is defined as the trace of the product



1396 Mukherjee, Choudhury, and Chowdhury

of R̂
(k)
λ as follows (Ghose Choudhury and Roy Chowdhury, 2000):

Q̂λ = tr

N∏
k=1

R̂
(k)
λ−ck

(4.14)

where we have introduced additional inhomogeneity parameters {ck}Nk=1 at lattice
sites. With the aid of (4.13) we may define the kernel of the Q-operator by

Kλ ≡
∫

dqN . . .

∫
dq1

N∏
k=1

Rλ−ck
(x̃k, qk−1|xk, qk) (4.15)

where we have imposed the condition sk = qk−1. Using (4.13) and writing µk =
(λ−ck+2η)

η
we may express the kernel of (4.15) by

Kλ =
N∏

k=1

ρλ−ck
x

µk−1
k x̃

−µk

k exp

(
xk

ηx̃k

− x̃k

ηxk−1

)
(4.16)

whence upon taking the logarithm of Eq. (4.16) one obtains

log Kλ =
N∑

k=1

log

[
ρλ−ck

x
µk−1
k x̃

−µk

k exp

(
xk

ηx̃k

− x̃k

ηxk−1

)]

= 1

η

N∑
k=1

[
(λ − ck) log

(
xk

x̃k

)
+ xk

x̃k

− x̃k

xk−1

]
+

∑
k

�̃k (4.17)

where

�̃k = −µk log η + log
�(µk)

2i sin(πµk)
(4.18)

is a quantum correction. The appearance of �(µk) will be apparent from what
follows. But it is evident from (4.17) that the exponential of the classical generating
function F (λ) for canonical Bäcklund transformation as given by (3.12) is related
to the kernel Kλ and represents therefore the semi classical limit. From equations
(4.1) and (4.13) we observe that for any suitable function φ(q, x)

R̂λ−c : φ(x, q) �−→
∫

dx

∫
dqRλ−c(x̃, s|x, q)φ(x, q)

=
∫

dx

∫
dqρλ−cx

λ−c+η

η x̃
− (λ−c+2η)

η exp

(
x

ηx̃
− x̃s

η

)
δ(q − x−1)φ(x, q)

(4.19)
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Consequently if φ(q, x) = 1 then one can write (4.19) as

R̂λ−c : 1 �−→ ρλ−c

∫
dx

(
x

ηx̃

) λ−c+η

η

η
λ−c+η

η x̃−1 exp

(
x

ηx̃
− x̃s

η

)
. (4.20)

Introducing σ = − x
ηx̃

and z = − x̃s
η

allows us to express Eq. (4.20) as

Rλ−c : 1 �−→ −ρλ−cη
λ−c+2η

η ez

∫
(−σ )

λ−c+2η

η
−1

e−σ dσ. (4.21)

Next from the integral representation of Euler’s Gamma function (Roy
Chowdhury and Ghose Choudhury, 2004) viz.

�(µ) = − 1

2i sin(πµ)

∫
c

(−σ )µ−1e−σ dσ. (4.22)

where the contour C is depicted in figure [1]. We may express (4.21) in the form

R̂λ−c : 1 �−→ ρλ−cη
µez2i sin(πµ)�(µ) (4.23)

where µ = (λ − c + 2η)/η, so that we may fix the normalisation factor ρλ−c by
letting

ρλ−c = η−µ

2i sin(πµ)�(µ)
(4.24)

which enables us to write

R̂λ−c : 1 �−→ e
−x̃s
η

with

Rλ−c(x̃, s|x, q) = η−µ

2i sin(πµ)�(µ)
xµ−1x̃−µ exp

(
x

ηx̃
− x̃s

η

)
δ(q − x−1).

(4.25)
The expression for the quantum correction given by Eq. (4.18) is evident from the
above form of Rλ−c as given in Eq. (4.25).

We shall next consider how the spectrum of the system may be analysed.

5. ANALYTICAL BETHE ANSATZ

As stated earlier in section one, derivation of the spectrum of the model
constitutes an important aspect of any quantum mechanical analysis of an inte-
grable system. To this end we consider the quantum mechanical version of the Lax
operator in Eq. (2.1) in which the discrete dynamical variables (xn, pn) are con-
sidered to as non commuting quantum mechanical variables obeying appropriate
commutation relations as given by Eq. (4.2)
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In the quantum regime the Lax operator satisfies the following algebra, which
serves as the defining relation for the quantum R-matrix:

R(u − v)lk(u) ⊗ lk(v) = lk(v)lk(u)R(u − v). (5.1)

For the model under consideration the quantum R-matrix is of the form

R(u − v) =

⎛
⎜⎜⎜⎜⎝

u − v − iη 0 0 0

0 −iη u − v 0

0 u − v −iη 0

0 0 0 u − v − iη

⎞
⎟⎟⎟⎟⎠ . (5.2)

The corresponding monodromy matrix is defined by

TN (u) = lN (u)lN−1(u) . . . l1(u) (5.3)

and the transfer matrix is obtained from the trace of TN (u) i.e.

t(u) ≡ trTN (u) = tr

N∏
k=1

lk(u). (5.4)

It is well known that Eq. (5.1) then implies,

R(u − v)TN (u) ⊗ TN (v) = TN (v) ⊗ TN (u)R(u − v) (5.5)

which may be regarded as representing a kind of global version of the local relation
(5.1). From Eq. (5.3) it is evident that TN (u) is a 2 × 2 matrix with operator entries,
so that formally we may express TN (u) in the form

TN (u) =
(

AN (u) BN (u)

CN (u) DN (u)

)
(5.6)

so that

t(u) = AN (u) + DN (u). (5.7)

From (5.5) it is a staright forward matter to derive the following commutation
rules for the entries of TN (u):

[AN (u), AN (v)] = [BN (u), BN (v)] = [CN (u), CN (v)] = [DN (u),DN (v)] = 0

(5.8)

[AN (u), CN (v)] = iη

u − v
[CN (u)AN (v) − CN (v)AN (u)] (5.9)

[DN (u), CN (v)] = iη

u − v
[DN (u)CN (v) − DN (v)CN (u)] (5.10)
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a close look at the Lax operator considered in our case however reveals an inter-
esting feature, namely the non- existence of a pseudovacuum state— a feature also
shared by the well known Toda lattice. This prevents us from being able to apply
the techniqueof Algebraic Bethe Ansatz for deducing the spectrum of the model.
It is necessary therefore to take recourse to the so called analytical Bethe ansatz
which relies on the explicit construction of suitable polynomial expansions of the
elements of the monodromy matrix from its defining Eq. (5.3) (Whittaker and
Watson, 1958; Sklyanin, 1992). In the present case one finds by explicit multipli-
cation that

AN (u) = O(uN−2)

CN (u) = x1(uN−1 + . . .) (5.11)

DN (u) = uN + i

(
N∑
K

pkxk

)
uN−1 + . . .

Now let us denote by ûα (α = 1, 2, 3 . . . , N − 1) the zeros of CN (u) so that

CN (ûα) = 0, α = 1, 2 . . . N − 1. (5.12)

This allows us to redefine the operator CN (u) of (5.11) in the following form,
in terms of its zeros,

CN (u) = x̂1

N−1∏
α=1

(u − ûα). (5.13)

Next we define the operator v̂±
α by left substitution u =⇒ ûα into the operators

AN (u) and DN (u) i.e.,

v̂+
α ≡ AN (u =⇒ ûα), v̂−

α ≡ DN (u =⇒ ûα), α = 1, 2, 3 . . . , N − 1 (5.14)

The zeros of CN (u), i.e., {ûα}N−1
α=1 together with {v̂±

α }N−1
α=1 may be shown to be

the separation variables of the eigen value problem. However note that the zeros of
CN (u) provide us with only (N-1) “co-ordinates.” Hence it is necessary to identify
another pair of conjugate variables, as we are dealing with N lattice sites. We take
the following

ûN ≡ x̂1 and v̂N ≡
N∏

k=1

p̂kx̂k (5.15)

The commutation rules (5.8)–(5.10) then allow us to derive the following
commutation relations:

[ûN , ûα] = [ûN , v̂±
α ] = [v̂N , ûα] = [v̂N , v̂±

α ] = 0,

α = 1, 2 . . . N − 1 (5.16)
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[ûN , v̂N ] = iηûN , [v̂±
α , ûβ ] = ∓iηv̂±

α δαβ (5.17)

[v̂+
α , v̂+

β ] = 0 = [v̂−
α , v̂−

β ]. (5.18)

In view of the above, we may employ Lagrange interpolation formulae to
rewrite the elements of the monodromy matrix in the following manner.

CN (u) = ûN

N−1∏
α=1

(u − ûα) (5.19)

AN (u) =
N−1∑
α=1

N−1∏
β 	=α

u − ûβ

ûα − ûβ

v̂+
α (5.20)

DN (u) =
(

u + iv̂N +
N−1∑
α=1

ûα

)
N−1∏
α=1

(u − ûα) +
N−1∑
α=1

N−1∏
β 	=α

u − ûβ

ûα − ûβ

v̂−
α . (5.21)

Let us now consider the action of the transfer matrix on any symmetric
function φ(û1, û2, . . . ûN−1):

t(u)φ(û1, û2, . . . ûN−1) = ÂN (u)φ(û1, û2, . . . ûN−1) + D̂N (u)φ(û1, û2, . . . ûN−1)

=
N−1∑
α=1

N−1∏
β 	=α

u − ûβ

ûα − ûβ

v̂+
α φ(û1, û2, . . . ûN−1)

+
(
u + iv̂N +

N−1∑
α=1

ûα

)
N−1∏
α=1

(u − ûα)φ(û1, û2, . . . ûN−1)

+
N−1∑
α=1

N−1∏
β 	=α

u − ûβ

ûα − ûβ

v̂−
α φ(û1, û2, . . . ûN−1). (5.22)

Then the substitution u −→ ûα gives

t(ûα)φ(û1, û2, . . . ûN−1) = v̂+
α φ(û1, û2, . . . ûN−1) + v̂−

α φ(û1, û2, . . . ûN−1)
(5.23)

The actions of v̂±
α on φ(û1, û2, . . . , ûN−1) can be understood from the com-

mutation relations (5.17) Hence

[v̂±
α , ûβ ] = ∓iηv̂±

α δαβ

⇒ v̂±
α ûα = (ûα ∓ iη)v̂±

α

it follows that

v̂±
α φ(û1, û2, . . . , ûN−1) = φ(û1, û2, . . . ûα ∓ iη, . . . ûN−1)v̂±

α . (5.24)
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Hence Eq. (5.23) now assumes the form

t(ûα)φ(û1, û2, . . . ûN−1) = φ(û1, û2, . . . ûα − iη, . . . ûN−1)

+φ(û1, û2, . . . ûα + iη, . . . ûN−1) (5.25)

If we now assume that φ(û1, û2, . . . , ûN−1) is separable so that

φ(û1, û2, . . . ûN−1) +
N−1∏
α=1

ψ(ûα) (5.26)

we find that

t(ûα)
N−1∏
α=1

ψ(ûα) = {ψ(û1) . . . ψ(ûα − iη) . . . ψ(ûN−1)}

+ {ψ(û1) . . . ψ(ûα + iη) . . . ψ(ûN−1)}
which evidently leads to the following relation, namely

t(u)ψ(u) = ψ(u − iη) + ψ(u + iη). (5.27)

Assuming further that ψ(u) = ∏
j (u − uj ) then leads to the conclusion that

t(u)
∏
j

(u − uj ) =
∏
j

(u − iη − uj ) +
∏
j

(u + iη − uj ). (5.28)

The zeros uj of ψ(u) may be determined by setting u = uk in (5.28) which
leads to the following set of equations determining them:∏

j 	=k

uk − uj − iη

uk − uj + iη
= 1. (5.29)

6. DISCUSSION

In this communication we have obtained a new hierar chy of discrete nonlin-
ear equations from the Lax operator (2.1). The explicit form of the equations for
the simplest case are given in (2.8). The system is observed to posses a standard
classical r- matrix structure, from which we have obtained an explicit form of clas-
sical Bäcklund transformation for the system under consideration. It is important
to note that by the very manner of its construction, the Bäcklund transformation
so obtained is also a canonical transformation being derivable from a generating
function whose explicit form is given in (3.12). We have then analysed the cor-
responding quantum version of such a canonical Bäcklund transformation, which
gives rise to the notion of a Q operator. The representation of later being in the
form of an integral operator whose kernel and normalisation factor have being
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explicitly determined. Finally we have outlined the manner in which the spectrum
of the quantum mechanical version of the Lax operator may be deduced. It is nter-
esting to note that because the Lax operator does not have a pseudo vacuum state,
we have had to formulate the quantum inverse problem in terms of the Analytical
Bethe Ansatz rather than the usual algebraic procedure.
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